Partitioning of crude oil polycyclic aromatic hydrocarbons in aquatic systems.

نویسندگان

  • Michael C Sterling
  • James S Bonner
  • Cheryl A Page
  • Christopher B Fuller
  • Andrew N S Ernest
  • Robin L Autenrieth
چکیده

This paper investigates the hypothesis that observed polycyclic aromatic hydrocarbon (PAH) concentrations in an aqueous system are equal to the sum of the organic phase and soluble phase molar concentrations. While the organic phase concentrations are proportional to the PAH mole fraction in the oil, the soluble phase molar concentrations are estimated using Raoult's law. A batch laboratory mixing vessel with a scalable mixing energy was loaded initially at various oil layer thicknesses (0.4-3.2 mm) which correspond to oil surface loadings (40-310 mg/cm2). The vessel was agitated at constant mean shear rates (Gm = 5, 20 s(-1)). Total petroleum hydrocarbon (TPH) samples were taken periodically to estimate the entrainment rate as a function of initial oil layer thickness. TPH concentrations were measured in-situ using a laser scattering instrument (LISST-100) and ex-situ using gravimetric analysis. At a steady-state TPH concentration (>72 h), additional samples were analyzed for PAH concentration using GC/MS analysis. TPH concentrations increased over time according to a first-order kinetic model. Generally, the first-order rate constant and steady-state concentration both increased with increased oil loading and with increased Gm. In addition, measured PAH concentrations correlated well (r2 > 0.96) with those predicted by a partitioning model. These results are useful for assessing the effects of mixing and oil loading conditions on crude oil entrainment and PAH partitioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ecological impacts of the deepwater horizon oil spill: implications for immunotoxicity.

The Deepwater Horizon (DWH) oil spill was the largest environmental disaster and response effort in U.S. history, with nearly 800 million liters of crude oil spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep-ocean communities and over 1,600 kilometers of shoreline. Multiple species of pelagic, tidal, and estuarine organisms; sea turtles; marine mammals; and bi...

متن کامل

ارزیابی تجزیۀ زیستی آنتراسن به وسیلۀ Gliomastix sp. جداشده از خاک های آلوده پالایشگاه شازند، ایران

In this study, fungal strains with crude oil biodegradation activity were screened from Shazand oil refinery (Arak). Twelve fungal strains were isolated in PDA medium. TPH assay in the presence of 1% of crude oil showed that the ADH-02 was the most capable strain of oil degradation with an efficiency of 75%. FTIR analysis was revealed that 91% of aliphatic hydrocarbons were degraded by ADH-02. ...

متن کامل

Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos).

Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil ...

متن کامل

Cytogenetic damage induced by crude oil in Anodonta cygnea (mollusca,bivalvia) assessed by the comet assay and micronucleus test

Crude oil is enriched in polycyclic aromatic hydrocarbons (PAHs). Many PAH analogs have proved to potentially damage DNA. DNA damage can be assessed using various biomarkers to find out the degree of genotoxicity of pollutants following in vitro exposure. In this research the comet assay and micronucleus (MN) test were used to detect DNA damages and cytogenetic changes following crude oil expos...

متن کامل

Genome sequence of Pseudomonas aeruginosa DQ8, an efficient degrader of n-alkanes and polycyclic aromatic hydrocarbons.

Pseudomonas aeruginosa DQ8, which was isolated from the crude oil polluted soil in the Daqing oilfield of China, can efficiently degrade diesel, crude oil, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs). Here, we present a 6.8-Mb assembly of its genome sequence. We have annotated 23 coding sequences (CDSs) responsible for catabolism of n-alkanes and PAHs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 37 19  شماره 

صفحات  -

تاریخ انتشار 2003